2,421 research outputs found

    Small Power Systems Solar Electric Workshop Proceedings. Volume 1: Executive report. Volume 2: Invited papers

    Get PDF
    The background, objectives and methodology used for the Small Power Systems Solar Electric Workshop are described, and a summary of the results and conclusions developed at the workshop regarding small solar thermal electric power systems is presented

    Women's Work, Women's Lives: A Comparative Economic Perspective

    Get PDF
    This chapter provides a broad overview of women's economic status in all parts of the world, with special emphasis on their position relative to men. Large differences are found among countries and regions in the size of the gender gap with respect to such measures as labor force participation, occupational segregation, earnings, education, and to a some what lesser degree the amount of time spent on housework. Two generalizations, however, hold. Women have not achieved full equality anywhere, but particularly in the advanced industrialized countries for which data on the relevant variables are more readily available, there is evidence of a reduction of gender differences in economic roles and outcomes.

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles

    Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster

    Full text link
    The scaling properties of self-avoiding walks on a d-dimensional diluted lattice at the percolation threshold are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y. Meir and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via renormalization its multifractal properties are directly accessible. While the former first order perturbation did not agree with the results of other methods, we find that the asymptotic behavior of a self-avoiding walk on the percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 + 110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric description of the available MC and exact enumeration data in a wide range of dimensions 2<=d<=6.Comment: 4 pages, 2 figure

    Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

    Full text link
    We present systematic measurements of longitudinal relaxation rates (1/T11/T_1) of spin polarization in the ground state of the nitrogen-vacancy (NV^-) color center in synthetic diamond as a function of NV^- concentration and magnetic field BB. NV^- centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV^- center concentrations. Values of (1/T11/T_1) were measured for each spot as a function of BB.Comment: 4 pages, 8 figure

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)rag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in ϵ=4d\epsilon=4-d and δ=4a\delta=4-a that there is a range of correlation strengths δ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents γf\gamma_f that govern entropic effects. We find that γf1\gamma_f-1, the deviation of γf\gamma_f from its mean field value is amplified by the disorder once we increase δ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    Dynamical Scaling Behavior of Percolation Clusters in Scale-free Networks

    Full text link
    In this work we investigate the spectra of Laplacian matrices that determine many dynamic properties of scale-free networks below and at the percolation threshold. We use a replica formalism to develop analytically, based on an integral equation, a systematic way to determine the ensemble averaged eigenvalue spectrum for a general type of tree-like networks. Close to the percolation threshold we find characteristic scaling functions for the density of states rho(lambda) of scale-free networks. rho(lambda) shows characteristic power laws rho(lambda) ~ lambda^alpha_1 or rho(lambda) ~ lambda^alpha_2 for small lambda, where alpha_1 holds below and alpha_2 at the percolation threshold. In the range where the spectra are accessible from a numerical diagonalization procedure the two methods lead to very similar results.Comment: 9 pages, 6 figure

    An ambitwistor Yang-Mills Lagrangian

    Full text link
    We introduce a Chern-Simons Lagrangian for Yang-Mills theory as formulated on ambitwistor space via the Ward, Isenberg, Yasskin, Green, Witten construction. The Lagrangian requires the selection of a codimension-2 Cauchy-Riemann submanifold which is naturally picked out by the choice of space-time reality structure and we focus on the choice of Euclidean signature. The action is shown to give rise to a space-time action that is equivalent to the standard one, but has just cubic vertices. We identify the ambitwistor propagators and vertices and work out their corresponding expressions on space-time and momentum space. It is proposed that this formulation of Yang-Mills theory underlies the recursion relations of Britto, Cachazo, Feng and Witten and provides the generating principle for twistor diagrams for gauge theory.Comment: 13 page

    Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell

    Full text link
    Nonlinear magneto-optical resonances have been measured in an extremely thin cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural isotopic composition. All hyperfine transitions of both isotopes have been studied for a wide range of laser power densities, laser detunings, and ETC wall separations. Dark resonances in the laser induced fluorescence (LIF) were observed as expected when the ground state total angular momentum F_g was greater than or equal to the excited state total angular momentum F_e. Unlike the case of ordinary cells, the width and contrast of dark resonances formed in the ETC dramatically depended on the detuning of the laser from the exact atomic transition. A theoretical model based on the optical Bloch equations was applied to calculate the shapes of the resonance curves. The model averaged over the contributions from different atomic velocity groups, considered all neighboring hyperfine transitions, took into account the splitting and mixing of magnetic sublevels in an external magnetic field, and included a detailed treatment of the coherence properties of the laser radiation. Such a theoretical approach had successfully described nonlinear magneto-optical resonances in ordinary vapor cells. Although the values of certain model parameters in the ETC differed significantly from the case of ordinary cells, the same physical processes were used to model both cases. However, to describe the resonances in the ETC, key parameters such as the transit relaxation rate and Doppler width had to be modified in accordance with the ETC's unique features. Agreement between the measured and calculated resonance curves was satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10 figures; accepted for publication in Physical Review
    corecore